
ABSTRACT

The Computational Fluid Dynamics code Overflow includes as one of
its solver options an algorithm which is a fairly small piece of code but which
accounts for a significant portion of the total computational time. This paper
studies some of the issues in accelerating the code by using a Graphics Processing
Unit (GPU). The algorithm needs to be modified to be suitable for a GPU, and
attention needs to be given to 64-bit and 32-bit arithmetic. Interestingly, the
work done for the GPU produced ideas for accelerating the CPU code and led
to significant speedup on the CPU.
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1. INTRODUCTION

Computational Fluid Dynamics (CFD) has a history of seeking and requiring
ever higher computational performance. This quest has in the past been satis-
fied mainly by faster clock speeds. The era of increasing clock rates has reached
a plateau, due mainly to heat dissipation constraints. A boost in computational
performance without increasing clock speed can be supplied by parallelism. This
parallelism can come in the form of task parallelism, data parallelism, or per-
haps a combination of the two. Common current paradigms for implementing
parallelism are explicit message-passing with MPI [12] for either distributed or
shared memory systems and OpenMP [13] for shared memory systems. A hy-
brid paradigm is also possible, with OpenMP on multiprocessor nodes and MPI
among the nodes.

A Graphics Processing Unit (GPU) is a processor specialized for graphics
rendering. Much work has recently been focused on GPUs as devices that can
be used in general-purpose computing. A GPU can produce a very high Flop/s
(floating-point operations per second) rate if an algorithm is well-suited for the
device. There have been several studies illustrating the acceleration of scientific
computing codes that is possible by using GPUs [2, 6, 10]. In this paper we study
the issues in accelerating a well-known CFD code, Overflow, on a GPU.
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2. OVERFLOW CODE

The Overflow code [3, 4, 5, 9] is intended for the solution of the Reynolds-
averaged Navier-Stokes equations with complex geometries. The code uses finite
differences on logically Cartesian meshes. The meshes are body-fitted and geo-
metric complexity is handled by allowing the meshes to arbitrarily overlap one
another.

Overflow uses implicit time-stepping and can be run in time-accurate or
in steady-state modes. Implicit time-stepping is used because implicit methods
tend to mitigate severe stability limits on the size of the time step that arise
for explicit methods on highly-stretched grids that are common for viscous flow
problems at high Reynolds numbers. A consequence of implicit time-stepping is
that some method is needed to approximately solve the large system of equations
that arises when stepping from one time level to the next.

The Overflow user needs to specify physical flow inputs, such as Mach
number and Reynolds number, and boundary conditions which typically define
solid walls and inflow or outflow regions. Along with these physics-type in-
puts there are inputs which choose particular numerical algorithms and specify
parameters for them.

The basic equation of fluid motion solved by Overflow is of the form

Qt + L(Q) = f(Q), (1)

where Q is the vector of flow variables, L(Q) denotes all the spatial differencing
terms, and f(Q) denotes terms from boundary conditions and possible source
terms.

The basic equation (1) is written in “delta form” [1, 8]

A(∆Qn+1) = Rn, (2)

where A is a large sparse matrix which is not explicitly constructed, ∆Qn+1 =
Qn+1−Qn, and Rn involves the discretization of the L(Q) terms at time level n.
The user of Overflow must choose among several possible discretizations (e.g.
central differencing, Total Variation Diminishing, Roe upwind). Each of these
choices typically requires further user specification of numerical parameters, e.g.
dissipation parameters or type of flux limiter and parameters for the limiter.
Finally the user needs to decide which implicit algorithm to use: some choices
are factored block tridiagonal, factored scalar pentadiagonal, LU-SGS. Over the
years the code evolved and expanded to incorporate six basic choices for the
implicit part of the algorithm.

3. GPU CONSIDERATIONS

GPU cards were originally hard to program and had a steep learning curve.
The advent of less daunting interfaces such as CUDA [11] has led to an explosion
of interest in using GPUs for numerically intensive work in scientific computing.

For our purposes here the key issues of GPU cards are massive parallelism
(hundreds or thousands of threads), mostly SIMD parallelism, 32-bit floating
point arithmetic, and the overhead of data traffic between the CPU and GPU.
For a GPU to successfully accelerate a piece of code the code must be amenable
to large-scale SIMD parallelism, must tolerate 32-bit floating-point arithmetic,

NAS Technical Report NAS-09-003, November 2009

2



and must contain enough computational work to amortize the cost of transferring
data from the CPU to the GPU and transferring results back from the GPU to
the CPU. (Recent GPU hardware supports some limited 64-bit arithmetic but
32-bit arithmetic is significantly faster.) We will see that the SSOR algorithm
in Overflow is not well-suited to a GPU, but that a Jacobi version of the
algorithm might be suitable for a GPU.

4. THE SSOR ALGORITHM IN OVERFLOW

In an attempt to ease the user’s burdensome task of selecting algorithm op-
tions and choosing parameters which may change for each class of flow problem,
recently another option was added for the implicit part of Overflow with
the hope that it would be widely applicable and would be almost universally
usable [7]. This algorithm is called in the references an SSOR algorithm, but
it is strictly speaking a mix of an SSOR algorithm and a Jacobi algorithm, a
“quasi-SSOR” algorithm.

The key step of the quasi-SSOR algorithm is as follows. At each grid
point with index (j, k, l) one computes a residual Rn

jkl and 5 × 5 matrices
AJ, AK, AL, CJ, CK, CL; these matrices depend on the flow variables at the
neighboring grid points, and are fixed during the SSOR iterations. Then, with
iteration stage denoted by a superscript n and with a relaxation parameter ω,
relaxation steps are of the form

∆Qn+1
jkl = (1− ω)∆Qn

jkl

+ω(Rn
jkl − AJjkl∆Qn

j−1,k,l − AKjkl∆Qn+1
j,k−1,l − ALjkl∆Qn+1

j,k,l−1

−CJjkl∆Qn
j+1,k,l − CKjkl∆Qn

j,k+1,l − CLjkl∆Qn
j,k,l+1) (3)

for a forward sweep (assuming the 5-vectors ∆Qn+1
j,k−1,l and ∆Qn+1

j,k,l−1 have been
computed, and updating all ∆Qjkl as soon as a full line of j values has been
computed), and a step of the form

∆Qn+1
jkl = (1− ω)∆Qn

jkl

+ω(Rn
jkl − AJjkl∆Qn

j−1,k,l − AKjkl∆Qn
j,k−1,l − ALjkl∆Qn

j,k,l−1

−CJjkl∆Qn
j+1,k,l − CKjkl∆Qn+1

j,k+1,l − CLjkl∆Qn+1
j,k,l+1) (4)

for a backward sweep (again assuming ∆Qn+1
j,k+1,l and ∆Qn+1

j,k,l+1 have been com-
puted). The forward/backward pair is then iterated. This algorithm is not
strictly speaking an SSOR algorithm; it is Jacobi in j-lines and SSOR in k-l
planes. We will refer to it as SSOR for simplicity. This algorithm needs the
6 nearest spatial neighbors of ∆Qn

jkl, some at iteration level n and some at
iteration level n + 1.

The SSOR algorithm is a modest-sized subroutine but it may consume 80% of
the total runtime of the code, so it is a computational hot spot. The modest size
of the subroutine and the large fraction of total time consumed by the algorithm
make using a GPU as a coprocessor to accelerate the code an attractive idea.

Unfortunately, the algorithm as it stands is not suited to a GPU due to the
dependencies of the iteration, namely ∆Qn+1 appears on the right-hand side of
equations (3) and (4). An algorithm that would be suited to a GPU would be
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a Jacobi algorithm with relaxation steps of the form

∆Qn+1
jkl = (1− ω)∆Qn

jkl

+ω(Rn
jkl − AJjkl∆Qn

j−1,k,l − AKjkl∆Qn
j,k−1,l − ALjkl∆Qn

j,k,l−1

−CJjkl∆Qn
j+1,k,l − CKjkl∆Qn

j,k+1,l − CLjkl∆Qn
j,k,l+1) (5)

Here we could envision assigning a thread of computation to each grid point and
the threads could compute independently of one another because there are no
∆Qn+1 terms on the right-hand side of (5).

It is important to realize that the Jacobi algorithm might be less robust or
might converge slower than the original SSOR algorithm. Fully discussing this
would take us too far afield, though we will show some convergence comparisons
of Jacobi and SSOR.

The work presented here proceeded in several stages:

1. Implement a Jacobi algorithm on the CPU using 64-bit arithmetic; compare
performance and convergence/stability of Jacobi and SSOR.

2. Implement a Jacobi algorithm on the CPU using 32-bit arithmetic; compare
performance and convergence/stability of 64-bit and 32-bit Jacobi.

3. Implement a Jacobi algorithm on the GPU; compare performance of the GPU
algorithm with the 32-bit CPU algorithm.

5. IMPLEMENTATION AND RESULTS

The first stage of the work, implementing the Jacobi algorithm on the CPU
using 64-bit arithmetic, was straightforward. We compare in Figure 1 conver-
gence for the SSOR and Jacobi algorithms on two test cases. The first test
case is turbulent flow over a flat plate with a 121 × 41 × 81 grid. The second
flow is turbulent flow in a duct with a 166 × 31 × 49 grid. Both cases show,
unsurprisingly, that asymptotic convergence of the Jacobi algorithm is slightly
slower than that of the SSOR algorithm. Both cases reach machine zero (so-
lution converged to 64-bit accuracy). The SSOR algorithm is slightly faster in
terms of wallclock seconds per time step, because the SSOR algorithm updates
∆Q as the computation proceeds whereas the Jacobi algorithm uses an extra
three-dimensional array to store the changes to ∆Q and then sweeps through
the full ∆Q array to form the new values of ∆Q.

Implementing the Jacobi algorithm in 32-bit arithmetic for the CPU was te-
dious but straightforward. The implementation included making 32-bit versions
of all the subroutines dealing with the computation of the left-hand side matri-
ces (about 50 subroutines) and copying, on the front-end, the flow variables and
metric terms to 32-bit quantities; in all, 28 words per grid point were copied
from 64-bit to 32-bit representation. In Figure 2 we show convergence for the
Jacobi algorithm in 64-bit arithmetic and in 32-bit arithmetic for the two test
cases. To plotting accuracy there is no difference in convergence between the
32-bit and 64-bit Jacobi algorithms. This verifies for these cases that full 64-bit
solution accuracy can be obtained with a 32-bit Jacobi algorithm.

Finally the Jacobi algorithm was implemented on the GPU. The strategy
was to compute all the matrices AJ , etc., on the CPU and transfer them to
the GPU. The Jacobi algorithm itself, just one subroutine, was hand-translated
into CUDA code. This strategy avoided a long error-prone translation of many

NAS Technical Report NAS-09-003, November 2009

4



0 5000 10000 15000 20000
Time step

10
-19

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

L
2 

re
si

du
al

SSOR, 64-bit
Jacobi, 64-bit

0 10000 20000 30000 40000
Time step

10
-19

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

Turbulent flat plate 3D Duct

Figure 1. SSOR and Jacobi convergence, 64-bit arithmetic

Fortran subroutines into CUDA, but this strategy may be suboptimal as the
matrices themselves could be computed on the GPU. We found no difference
between convergence of the 32-bit Jacobi algorithm on the CPU and on the
GPU, so the slight differences in details of floating-point arithmetic between the
CPU and the GPU have no impact for these cases.

Now we consider performance of the code. The metric we use is wallclock
seconds per step, so lower is better. The GPU algorithm was coded in several
slightly different ways, varying in the way the data were laid out on the GPU
and whether or not shared memory on the GPU was used. Data shown are for
the best-performing GPU variant.

The work here was done on two platforms. The first platform was a work-
station equipped with a 2.1 GHz quad-core AMD Opteron 2352 processor. The
host compiler system was the Portland Group compiler suite version 8. The

TABLE I. Implicit solver times, sec/step (lower is better)

G machine T machine
Algorithm Plate Duct Plate Duct
SSOR CPU 3.51 2.14 3.83 2.33
Jacobi GPU 1.43 0.91 1.35 0.76
GPU/CPU 0.41 0.43 0.35 0.33
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Figure 2. Jacobi convergence, 64-bit and 32-bit arithmetic

GPU card was a 1.35 GHz NVIDIA GeForce 8800 GTX with 128 cores and
768 MB of global memory. The connection between CPU and GPU was a PCI
Express 16X bus. The programming interface was CUDA version 1.0. This
platform will be referred to as the “G machine.”

The second platform was a workstation equipped with two 2.8 GHz dual-
core AMD Opteron 2220 processors. The GPU card was a 1.30 GHz NVIDIA
Tesla C1060 with 240 cores and 4 GB of global memory. For this machine, the
source code was cross-compiled on the first machine using the Portland Group
compiler. This platform will be referred to as the “T machine.”

Tables I and II give performance data for the two test cases on the two
machines. The implicit solver times in Table I (which include a small amount
of work on the CPU as well as the actual relaxation algorithm) show a speedup
on the GPU by about a factor of between 2.5 and 3. The reason the T machine

TABLE II. Total time for CPU and GPU, sec/step (lower is better)

G machine T machine
Algorithm Plate Duct Plate Duct
SSOR CPU 6.96 4.21 7.93 4.85
Jacobi GPU 4.41 2.66 5.04 3.12
GPU/CPU 0.63 0.63 0.64 0.64
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TABLE III. GPU Kernel times, sec/step (lower is better)

GTX8800 Tesla C1060
Plate Duct Plate Duct

GPU total 0.904 0.576 0.314 0.193
GPU kernel only 0.784 0.499 0.142 0.082

TABLE IV. SSOR performance on CPU, 64-bit and 32-bit (sec/step)

G machine T machine
Algorithm Plate Duct Plate Duct
SSOR-64 CPU 6.96 4.21 7.93 4.85
SSOR-32 CPU 5.55 3.34 6.30 3.87
SSOR-32/SSOR-64 0.80 0.79 0.79 0.80

times are only slightly better than the G machine times is that the times shown
here include some CPU work, and for some unknown reason the CPU routines
involved ran faster on the G machine than on the T machine. The total wallclock
time, which is the quantity of ultimate interest to the code user, decreases by
about 40%, as seen in Table II. Again, the G machine is overall faster than the
machine with the T machine, because the parts of the code that execute on the
CPU are for some reason faster on the G machine.

Table III gives GPU total time (kernel plus time for data transfer) and GPU
kernel time for these cases. For the GTX8800 device, the kernel which gave
the best overall code performance was a kernel which mapped each grid point
to a different thread on the GPU (thanks to Jonathan Cohen of NVIDIA for
showing a nice way to do this) and which used some shared memory. For the
Tesla device, the kernel which gave the best overall code performance was a
kernel involving a two-dimensional mapping of the first two grid dimensions
onto the device, a loop in the 3rd dimension, and 16 threads per grid point with
the 5× 5 matrices on the CPU stored in an array of size 32. For both the Tesla
and the GTX8800 devices there are data layouts which give better performance
of the GPU considered in isolation, but these layouts involve data motion on
the CPU and this data motion loses more wallclock time than is gained by the
faster kernel.

6. IMPACT OF GPU WORK ON CPU CODE

These results are encouraging. It seems that the Jacobi GPU algorithm is sig-
nificantly faster than the SSOR CPU algorithm, since Table II shows a speedup
for the whole code of about 40%. This is a significant speedup considering that
the only code being executed on the GPU is a small piece of the implicit side,
and there are no changes to the flow explicit side or to the turbulence model.

However, further reflection indicates that more performance can be gained
from the CPU. Specifically, the SSOR CPU algorithm could be changed to
use 32-bit arithmetic. Experience has shown that Overflow is a cache and
bandwidth-limited code, so use of 32-bit arithmetic (where applicable) should
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TABLE V. SSOR and OpenMP performance on CPU (sec/step)

G machine T machine
Algorithm OpenMP threads Plate Duct Plate Duct
SSOR-64 1 6.96 4.21 7.93 4.85
SSOR-64 2 5.53 3.27 6.76 4.11
SSOR-64 4 4.60 2.80 5.94 3.60

Revised SSOR-64 1 7.79 4.70 8.41 5.14
Revised SSOR-64 2 4.79 2.85 4.76 2.96
Revised SSOR-64 4 3.36 2.04 3.27 1.99

SSOR-32 1 5.55 3.34 6.30 3.87
SSOR-32 2 4.23 2.55 4.72 2.89
SSOR-32 4 3.45 2.11 3.92 2.41

Revised SSOR-32 1 6.07 3.65 6.92 4.20
Revised SSOR-32 2 3.63 2.18 3.79 2.37
Revised SSOR-32 4 2.38 1.47 2.50 1.52

significantly speed up the code due to the effective doubling of cache size and
bandwidth. This motivated the implementation of a 32-bit SSOR algorithm on
the CPU. Convergence for this algorithm, for the plate and duct test cases, was
identical to convergence for the 64-bit SSOR algorithm. Single-core performance
for the 32-bit SSOR algorithm is compared with performance for the 64-bit
SSOR algorithm in Table IV. Total wallclock time is reduced by 20% by the
use of 32-bit arithmetic; this is a significant speedup for such an unsophisticated
code modification.

Even more performance can be gained on the CPU by taking advantage
of the multiple cores found in essentially all contemporary scientific computing
environments. Overflow has long had OpenMP capability, but the SSOR
algorithm as originally coded in Overflow was not amenable to OpenMP
parallellism (as mentioned in section 4, the original coding was Jacobi in the j
index and Gauss-Seidel in the k and l indices, while the OpenMP parallelism in
Overflow is parallelism in l). Revising the algorithm to be Jacobi in l and
Gauss-Seidel in j and k allowed the use of OpenMP for the SSOR algorithm.
The revised SSOR algorithm had the same convergence characteristics as the
Jacobi algorithm for the duct and plate test cases. The revised algorithm can
also be coded in 64-bit or 32-bit arithmetic. We show in Table V performance
for these algorithms and various numbers of OpenMP threads; these are all CPU
performance numbers, the GPU is not involved here, and this is performance
for the full code.

For a single OpenMP thread the revised SSOR algorithm is slower than the
original, due to poorer cache utilization, but for 2 or 4 OpenMP threads the
revised algorithm is faster than the original.

Finally, Table VI gives performance data for the two platforms using the
Jacobi algorithm on the GPU and OpenMP threads on the CPU. To compare the
code with and without GPU but otherwise using all the computational resources,
the best numbers in Table V should be compared with the best numbers in
Table VI. The result is that for the workstation with the GTX8800 GPU, the
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TABLE VI. Jacobi on GPU + OpenMP on CPU, performance (sec/step)

OpenMP threads GTX8800 Tesla C1060
on CPU Plate Duct Plate Duct

1 4.39 2.66 4.58 2.85
2 3.10 1.78 2.92 1.83
4 2.32 1.42 1.90 1.18

best time with GPU is just a few percent faster than the best time without
GPU, whereas for the workstation with the Tesla C1060 GPU, the best time
with GPU is about 25% better than the best time without GPU. (The ultimate
reason for the better performance of the Tesla C1060 on this code is the relaxed
alignment restrictions for coalesced loads as compared to the GTX8800.)

Even this is not the end of the story, as there are further opportunities for
moving computation from the CPU to the GPU. For example, the matrices can
be computed in parallel, so this part of the computation, which is now executed
by the CPU, can be moved to the GPU. These and other optimizations are
currently under investigation.

7. CONCLUSIONS

The work presented in this paper has shown a speedup by a factor of between
2.5 and 3 for the SSOR solver in Overflow and a total wallclock time decrease
of about 40%, for a GPU as compared to a single CPU. The GPU work gave
ideas and motivation for accelerating the code on multi-core CPUs, so that
currently the CPU+GPU code is about 25% faster than the pure CPU code.

This study has until now focused on obtaining improved performance with
a one CPU + one GPU combination. This is the first step to enhancing Over-
flow performance via GPUs on realistic problems. However, for almost all
realistic cases, Overflow is used with MPI (Message-Passing Interface) and
many CPUs. The work here extends naturally to any cluster with a number of
multi-core nodes, each node also containing a GPU. Overflow could be used
in hybrid mode, with each node corresponding to an MPI process, and each MPI
process would have multiple OpenMP threads. The hyperwall-2 at NASA/Ames
Research Center [14] is such a cluster and the version of Overflow with GPU
capability has run on the hyperwall-2 as a proof of concept.

It is worthwhile to note that the work done here has affected the Overflow
code. The latest official release (version 2.1ac) of Overflow has completely
abandoned the 64-bit version of the SSOR algorithm in favor of the 32-bit ver-
sion, and the revised SSOR algorithm (32-bit arithmetic only) is available as an
option. The speedups due to 32-bit arithmetic were so compelling that 64-bit
arithmetic is no longer even an option in these portions of the code. This may
give food for thought when considering the need for 64-bit arithmetic on GPUs.
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